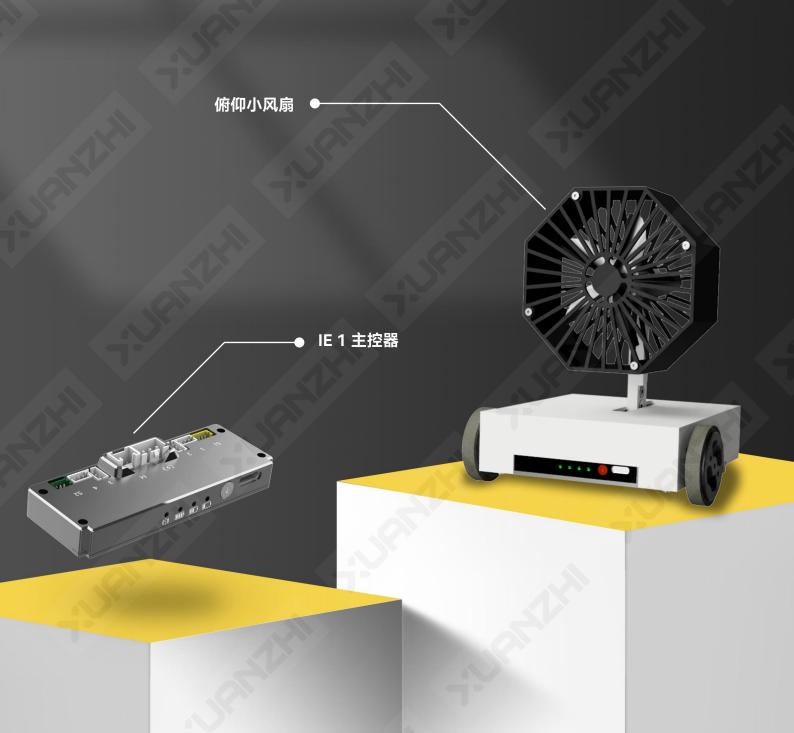


情仰/]图扇


IE 1 系列开源机型案例课程

俯仰小风扇

俯仰小风扇是以玄智自研的IE1主控器为核心设计的可移动小风扇。其外观简洁,动力强劲,除风扇头部能够俯仰移动外,机身也能够在遥控器的控制下随心移动。无论身在何处,俯仰小风扇都能在炎炎夏日为你带来一缕清凉。

其搭载的IE1主控器在E1系列的基础上进行了升级,新增了比例行驶与编程等复杂的功能。与主控器配套的软件相搭配能够实现自主编程,为机型设计和自主DIY提供更多可能。

1. 扇叶一体成型

为确保使用安全,这款小风扇特别选用了航模专用的一体成型扇叶。扇叶形态的特殊设 计确保了其使用的坚固性和耐用性。一体成型的设计有效降低了扇叶在高速旋转中可能发生 的断裂风险,极大地提高了产品的安全性能。

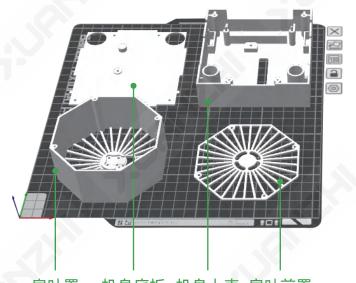
俯仰小风扇扇叶

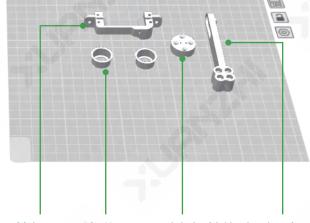
2. 风力强劲低噪音

在内部核心部件的选择上、俯仰小风扇采用了1806高速无刷电机。该电机转速更高且稳 定性更强,能够在保证风力强劲的同时,实现低噪音运行,为您创造一个舒适宁静的使用环 境。另外,无刷电机具有更长的使用寿命和更低的维护成本,能够让您持续畅享清凉。

IE 1 无刷电机

3. 全方位送风


除风扇头部能够在舵机的控制下俯仰移动外,机身也具有行驶功能。为了提供强劲的行 驶动力、这款小风扇配备了双运动模块、并搭配了高效率的减速箱。双运动模块的设计使得 风扇能够在不同角度提供强劲风力,满足不同场景的使用需求。



九型拼装

1. 组件准备

拼装俯仰小风扇需要提前打印所有的3D组件,还需额外准备或购买IE1主控器、遥控器 和螺丝、螺丝刀等组装零件。

机身底板 机身上壳 扇叶前罩 扇叶罩

防脱罩 无刷电机转换头 摆臂 舵机罩

俯仰小风扇打印件

俯仰小风扇零件清	单
零件规格	数量
M3×6内六角沉头螺丝	2
M3×8内六角杯头自攻螺丝	6
M2×8内六角杯头自攻螺丝	9
M3×6内六角圆头螺丝	1
M2×6内六角沉头螺丝	8
M2×16内六角杯头螺丝	4
M2×12内六角杯头螺丝	2
M2×8内六角沉头螺丝	4

主控器、遥控器

2. 拼装步骤

1 步骤一 Step one

用M3×8内六角杯头自攻螺丝将舵机固定在舵机罩上。

02 步骤二 Step two

将舵机连接在主控器1接口,电池连接在电池接口。长按主控器开关,听到舵机归零后关闭主控机并拔出线路。

03步骤三 Step three

用M3×6内六角圆头螺丝将舵机臂垂直于舵机固定在舵机上。

○ 少骤四 Step four

将舵机摆放在机身上壳的预留位置,将摆臂穿过机身上壳的孔洞,并用M3×6内六角沉头螺丝将舵机臂与摆臂固定。

05 步骤五 Step five

用M2×8内六角沉头螺丝将无刷电机转换头固定在无刷电机上。

06 步骤六 Step six

用M2×12内六角杯头螺丝将航模扇叶固定 在无刷电机转换头上。

107 步骤七 Step seven

将无刷电机上的电调穿过扇叶罩上的孔洞。

108 步骤八 Step eight

用M2×16内六角杯头螺丝将摆臂、扇叶罩、无刷电机依次固定。

り サ 駅 Step nine

将无刷电机线卡入摆臂侧的压线槽,并将电调穿过机身上壳的孔洞。转动扇叶检查无刷电机安装位置是否正确,若扇叶转动受阻,则检查无刷电机的安装位置。

10 步骤十 Step ten

用M2×8内六角杯头自攻螺丝将扇叶前罩固定在扇叶罩上。

步骤十一 Step eleven

将电池固定在机身上壳预留位置, 注意电池 线的摆放位置。

12步骤十二 Step twelve

将2个减速机模块分别安装在机身上壳预留位置,并用M2×6内六角沉头螺丝固定。

13 步骤十三 Step thirteen

减速机模块连接主控器2、3接口,无刷电机连接主控器M接口,舵机连接主控器1接口,电池连接主控器电池接口。注意连接线路时应将主控器插口向下。

14 步骤十四 Step fourteen

翻转主控器,将其固定在机身上壳预留位置。整理布线,避免挤压电线。

15 步骤十五 Step fifteen

将后部牛眼轮安装在机身上壳预留位置,将 防脱套安装在牛眼轮上。

16 步骤十六 Step sixteen

用M2×8内六角杯头自攻螺丝将机身底壳与机身上壳固定。

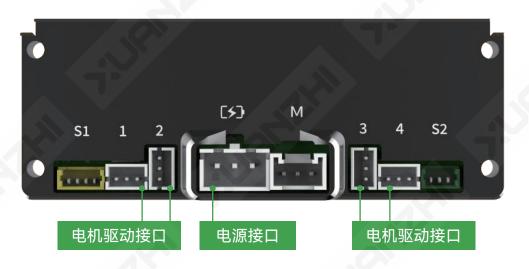
17步骤十七 Step seventeen

将轮毂与减速电机模块出轴连接,并用轮毂自带的M2.6×8十字沉头自攻螺丝将出轴与轮毂固定。

18 步骤十八 Step eighteen

将发泡海绵轮套上轮毂。

俯仰小风扇的驱动程序采用玄智自研的XUANZHI Programmer编程软件编写。


该应用程序是为XUANZHI IE 系列产品量身打造的一款主控器编程软件。它无需配置环境,并且配置了多种编程方式,既可使用C语言编程,又可通过图形化积木编程。其图形化编程模块多达百余个,可实现机器人运动编程、传感器配置等相关功能。

1. 俯仰小风扇程序相关模块释义

(1) 机器人模块

该模块为IE1主控器的主体编程模块,表示当IE1 主控器启动后,运行连接在该模块下的程序。调出机 器人模块需要在XUANZHI Programmer软件的主界面 当IE 1主控器启动 点击"拓展"按钮、选择"IE1竞技机器人主控器"。返回 主界面后,即可出现与主控器相关的系列编程模块。 该模块为与IE1主控器相匹配的R2遥控器编程模 块、表示遥控器的某一通道输出的数值。R2遥控器共 读取遥控器通道 有8个通道可供设置,充分满足自定义需求。 该模块为电机设置模块,表示驱动与主控器某接 口连接的电机按照预设数值输出速度。IE 1主控器共设 电机以(100)速度旋转 驱动 置4个驱动接口,可以连接运动模块和舵机。 该模块为舵机设置模块,表示驱动与主控器某接 设置舵机 口连接的舵机按照预设的数值输出转动角度。IE 1主控 器的4个输出接口中、均可以连接舵机。

电机接口示意

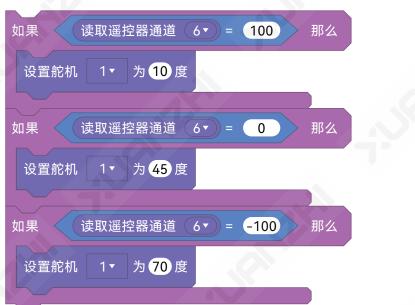
(2) 控制模块

该模块表示重复执行模块内所 有的程序。

该模块为条件判断模块,表示如果 达到<触发条件>,则执行其中的程 序,没有达到则执行"否则"中的语句。

(3) 运算符

1 + 1	加运算	1 * 1	乘运算
1 - 1	减运算	1 = 1	等于判断
1 > 50	大于判断	1 < 50	小于判断
或	逻辑或运算,任意满足两个条件中的一个条件则返回真, 否则返回假		
5	逻辑或运算,两个条件均满足则返回真,否则返回假		


2.俯仰小风扇程序逻辑解析

(1) 设置舵机初始角度

该条程序意在设定风扇头部的初始角度位置。由于控制风扇俯仰角度的为90°舵机,因此在中位角45°时,风扇为直吹角度。因此将舵机连接在主控器的1号接口后,设定该角度为风扇初始角度。

(2) 驱动舵机运动

该条程序意在驱动舵机按照遥控器通道6的数值输出特定角度。

根据程序可知,当通道6得到的数值为100时,舵机臂转动至10度,此时风扇处于仰吹模式;当通道6得到的数值为0时,舵机臂转动至45度,此时风扇处于直吹模式;当通道6得到的数值为-100时,舵机臂转动至70度,此时风扇处于俯吹模式。

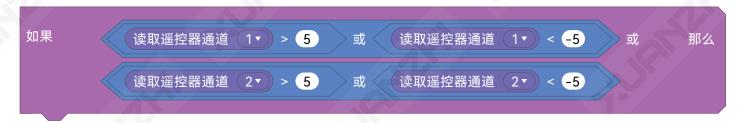
通过调试机器,编程者将舵机转动角度定为10度和70度,此时风扇头部与机身不发生结构干涉。您也可以根据不同场景和需求灵活调整舵机角度。

,小戏士,

为什么通过遥控器通道6控制舵机的角度?可以设置其他通道吗?

开发者为遥控器各通道与摇杆按键的对应关系定义了一种默认模式,即:左摇杆上下推为通道1,右摇杆左右推为通道2,右摇杆上下推为通道3,左摇杆左右推为通道4; 肩键SA为通道5,SB为通道6,SC为通道7,SD为通道8。

.少贴士.



配遥控器各通道示意图

其中,摇杆对应的1~4通道的取值范围为[-100,100]之间的整数值,通常用于控制行驶机构的行驶速度。按键SA和SD对应的通道5和通道8只有两种数值,初始值为100,按下按键后,数值为-100,相当于一对相反的命令,通常用于设置启动和停止。按键SB和SC为三档按键,对应的通道6和通道7有3种数值,初始值为0,向两侧拨动按键后数值分别变为-100和100,可根据具体需求进行编程。

由于小风扇的角度有直吹、俯吹、仰吹三种模式,且无刷电机模块已经占用了通道5和通道8,因此三档按键对应的通道6和通道7较为适合风扇的角度控制。在此编程语句中,编程者选择通道6,您也可根据使用习惯和设计需求选择其他通道。

(3) 条件判断

该条程序意在控制行驶电机的启动和停止。

如果遥控器通道1的数值 > 5或 < -5, 或通道2的数值 > 5或 < -5, 这四个条件满足任意一个,则该通道控制的电机启动,否则电机不启动。

.小贴士.

为什么驱动电机停止的数值要设置为[-5, 5]的区间值, 而不设置为0?

遥控器在使用一段时间后,可能会出现摇杆中值发生偏移的情况,因此输出的数值会产生误差。另外,操作手在操控摇杆回归中位时,操控动作可能会有精准度的偏差。基于这两点影响因素,设置了5到-5为停止区间,这样更容易驱动电机停止。

(4) 驱动电机旋转

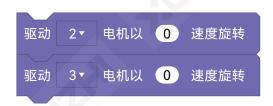
该系列程序意在驱动行驶电机以特定的输出速度前进、后退以及转弯。

2号接口驱动电机以(遥控器通道1数值)-(遥控器通道2数值)的运算结果为最终输出转速。3号接口驱动电机以[(遥控器通道1数值)+(遥控器通道2数值)]×(-1)的运算结果为最终输出转速。

,小戏士,

为什么两个电机的编程运算语句并不相同?这些语句有什么含义?机器人的行驶机构在语句的指导下如何运动?

驱动行驶电机的编程主体为运算语句部分。可以通过带入任意数值说明其含义。 当遥控器的左摇杆上推至50,右摇杆不动时,与2号接口连接的电机得到的数据是 50,与3号接口连接的电机得到的数据是-50。此时机器人以50的速度前进。为什么输入 的数值为相反数,但两电机的运动方向却一致?这是由电机安装方向决定的。为了使两 个电机的出轴都向外连接轮毂,两电机需按照轴对称的方向安装。因此,当两电机的输 入数值相同而方向相反时,机器人能够前进。



电机轴对称安装

当右摇杆左推到50,左摇杆不动时,驱动1,2电机的数据是0-(-50)=50,驱动3,4电机的数据是[0+(-50)]×(-1)=50。因此,电机的数据都是50。由于电机的轴对称安装,导致两电机的出轴旋转方向相反,机器人一轮前进,另一轮后退,最终结果为机器人原地转圈。

当左摇杆上推到100,右摇杆左推到50时,驱动1、2电机的数值为100-(-50)=150(电机转速的数值范围为-100~100,大于100的数值会被处理成100),驱动3、4电机的数据为[100+(-50)]×(-1)=-50。此时机器人两轮的旋转方向相同,但右轮的转速快于左轮,因此机器人向左前方转弯。

(3) 驱动电机停止

该系列程序意在识别到遥控器通道1或2输出的数值在[-5, 5]之间时,驱动行驶电机停止。

四 操作与调试

俯仰小风扇安装完毕后、需要将以上程序烧录至IE1的主控器中、并对风扇的运行进行调 试。

1. 操作方式

主控器与遥控器开机对频完毕后,进入可操作状态。小风扇行驶机构的操作方式如下:

左摇杆	右摇杆	行驶状态	左摇杆
上推	无操作	前进	上推
下推	无操作	后退	上推
无操作	左推	左转	下推
无操作	右推	右转	下推

左摇杆	右摇杆	行驶状态
上推	左推	左前方转弯
上推	右推	右前方转弯
下推	左推	左后方转弯
下推	右推	右后方转弯

俯仰小风扇的扇叶转速通过遥控器上的SD按键和SA按键控制。按压右手按键SD,无刷 电机控制的风扇转速依次递增;按压左手按键SA,无刷电机控制的风扇转速依次递减。SD 按键和SA按键均存在十档速度调节。

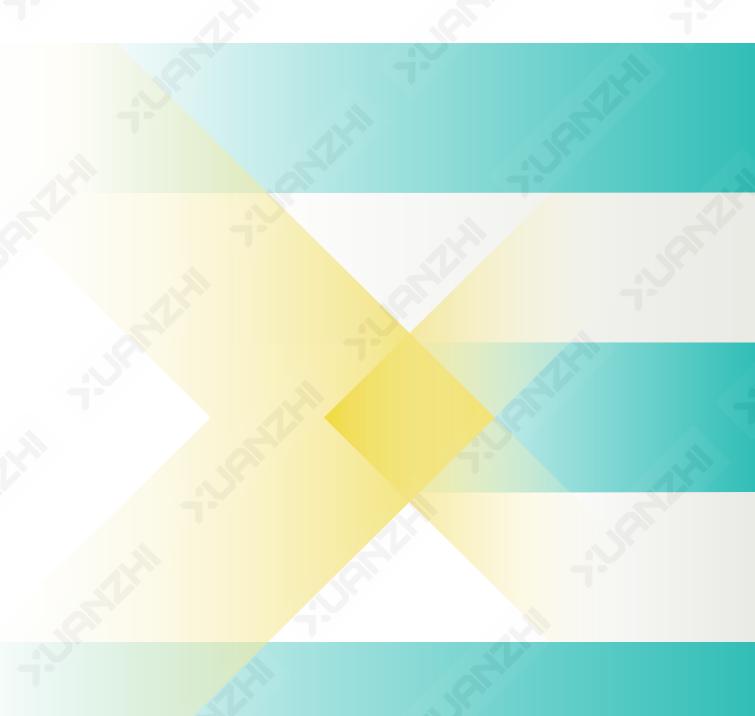
风扇头部的俯仰角度通过遥控器上的SB三档按键调节。当按键位于中间档位时,风扇为 直吹模式;当按键位于上方档位或下方档位时、风扇分别为仰吹模式和俯吹模式。

2. 俯仰小风扇调试常见问题

(1) 运动模块不工作

若电机不转动,首先检查主控器和遥控器的电池存储的电量是否过低;若电池电量正常,可检查连接电机的驱动接口与程序设置的接口是否一致;若接口连接一致,可检查电机排线与接口连接是否松动。

(2) 运动方向错误


若风扇行驶机构不按预期方向移动,可以检查程序中遥控器的通道设置是否有误;若通道设置无误,检查遥控器摇杆是否正确校准,摇杆偏差对机器人运动的速度和方向都有影响,因此需要定期校准摇杆。

(3) 风扇俯仰角度异常

若风扇头部俯仰角度异常,可对安装和调试过程进行检查。安装舵机臂之前,需要为舵机调零位,确定舵机的0度和90度的位置;舵机调试时,主控器的程序需要对舵机进行调整,以确保它们在正确的行程和方向上工作。

情仰小岛扇

IE 1 系列开源机型案例课程

